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Abstract. The criteria for phase invariance of quantum effects of the Aharonov-Bohm (AB) type are
revised. Gauge invariance, duality and other properties of the electromagnetic interaction lead to new field-
free quantum effects of the AB type for interfering beams of particles with opposite charges or magnetic
dipole moments.
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theory of measurement, miscellaneous theories (including Aharonov-Bohm effect, Bell inequalities, Berry’s
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1 Introduction

In quantum effects of the Aharonov-Bohm type (AB) [1–8]
a beam of interfering particles interacts with an exter-
nal potential or field. The Lagrangian has the usual form
L = K − V + v · Q, where Q is the electromagnetic
(em) interaction momentum and the quantum phase of
the particle for the corresponding Hamiltonian H reads
φ = �

−1
∫

Q·d��.
Effects of this kind are relevant in a wide context of

scientific and heuristic situations, such as those involving
quantum non-locality and topology [1–9], electromagnetic
interaction and duality [3–10], and even in some tests of
the validity of Coulomb’s law [11].

Usually, in these effects, the beam of particles is
split into two interfering beams that encircle the sources
(Fig. 1), or em “singularity” (i.e., the singularity ideally
represented by a line of em sources), and are then recom-
bined to produce an interference pattern.

Some of the effects of the AB type have been ver-
ified experimentally; for a discussion of them see refer-
ences [12,13] and, for tests of the Aharonov-Casher (AC)
effect, see reference [14]. However, in one recent test of
the AC effect [15], the paths of the two beams of particles
with opposite em properties (in this case, opposite mag-
netic dipole moments ±m) in a coherent superposition of
states |a〉 and |b〉, were not spatially separated but did
lie on the same side of the singularity (Fig. 2). A tech-
nique for testing these kinds of quantum effect for electric
dipoles ±d in a coherent superposition of states |a〉 and
|b〉 that are not spatially separated and lie at one side of
the singularity has also been proposed [10].
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Fig. 1. In most of the effects of the Aharonov-Bohm type, a
beam of particles P is split into two beams a and b that encircle
the em flux tube δΦem and form an interference pattern visible
on a screen. In the AB effect, the particles are electrons and em
flux (the “singularity”) is a thin solenoid. In the AC effect, the
particles are neutrons possessing an intrinsic magnetic dipole
moment m and the singularity is a charged wire.

In the first part of this paper we consider the observ-
able physical quantity that is measured in experimental
tests of the AB effect and revise the related criteria of
phase or gauge invariance. As a consequence of our revi-
sion we find that, for the physical observable of interest,
these criteria can be met in a much wider variety of cases
than is generally thought achievable. Some additional the-
oretical developments and the concomitant properties of
the em interaction, discussed in the second part, indicate



328 The European Physical Journal D

Fig. 2. Quantum effects of the AB type for beams of parti-
cles in a coherent superposition of states |a〉 and |b〉 that travel
at one side of the singular em flux tube δΦem. In the AC ef-
fect, the particles possess opposite magnetic dipole moments
±m. In the field-free effect for the electron-positron Aharonov-
Bohm effect, two beams of interfering particles with opposite
charges ±q travel at one side of a solenoid in the presence of
the vector potential A and form an interference pattern visible
on a screen. The interference pattern produced in correspon-
dence of A is compared with the reference pattern correspond-
ing to A0. The observable effect is given by the relative phase
shift ∆φ ∝ 2q

∫
a
(A − A0) · dx) and is due to the variation

∆Qem = Qem − Q0
em = 2q(A − A0) of the interaction em

momentum.

that new field-free effects of the AB type, that were con-
sidered physically impossible even in principle, are instead
viable. The new effects involve beams of particles with op-
posite electromagnetic properties, such as opposite charge
(electron-positron or positively-negatively ionized atoms)
or opposite em dipole moments.

2 Phase (or gauge) invariance in the AB
effects

What is physically relevant and common to all these quan-
tum effects [7] are the quantities

Q(x) = ±Qem = ± 1
4πc

∫
(E× B)d3x′=L∇θ, (1)

where Qem is the classical linear momentum of the em
fields and L (L = |L|) is the classical angular momentum
of the em fields.

Thus, in the AB effect, Q(x) = Qem = c−1qA, where
A(x) is the vector potential of the thin solenoid, q the
charge of the particle, and x the particle position. The AB
term c−1qA is obtained by taking E in equation (1) to be
the electric field of the charge and B to be the magnetic
field of the solenoid. A general proof that this result holds
in the natural Coulomb gauge, is given by Boyer [16], Zhu
and Henneberger [17], and Spavieri [18]. In the AC effect,
Q(x) = −Qem = c−1m × E, where m is the magnetic

dipole moment of the particle and E the external electric
field due to a line of charges. For the effects with electric
dipoles [5–7], Q(x) = Qem = c−1(d · ∇)A where d is the
electric dipole moment of the particle.

For all the effects of the AB type the momentum Q
is expressed as Q(x) = L∇θ, for r �= 0 (where the multi-
valued function θ = tan−1 y/x), and the geometrical prop-
erties of Q and of the em flux tube δΦem = ∇ × Q =
Lδ(r)/r determine the topology of the phase shift [7]:

δφ =
1
�

∮

C

Q · d�� =
1
�

∮

S

(∇ × Q) · dS

=
L

�

∮
dθ = 2πn

L

�
=

1
�
Φem. (2)

If the paths of the beams lie at one side of the singularity
(Fig. 2), as in the case of the test mentioned above for the
AC effect [15], then

δφ =
1
�

(∫

a

Q·d�� −
∫

b

Q·d��

)

=
2
�

∫

a

Q·d�� =
1
�

∮

C

Q · d��. (3)

At this point, one might question the validity of equa-
tions (2) and (3) when Q is expressed in terms of the
vector potential A. In fact, in a discussion about gauge in-
variance, one may argue that in this case δφ is a gauge de-
pendent quantity that can be made to vanish. That phase
factors cannot always be removed by a suitable phase or
gauge transformation was shown by Berry [19]. To ver-
ify that δφ is not a pure phase, it is sufficient to check
that [20], if the particle is transported along the closed
curve C, it encloses a nontrivial em flux Φem. Thus, the
phase shift of the standard AB effect for a beam of charges
encircling the singularity (Fig. 1), given by equation (2)
where the integral

∮
C Q · d�� = (q/c)

∮
C A · d�� is over the

closed curve C, is not removable by a gauge transforma-
tion. However, the AB effect for a beam of charges of op-
posite signs ±q in a coherent superposition of states |a〉
and |b〉, passing on one side of the solenoid (Fig. 2), should
not be detectable because

∆φ =
2
�

∫

a

Q · d�� =
2 q

� c

∫

a

A · d��

can be gauged to zero. This argument is based on the
well known theorem that in a simply connected field-free
region it is possible to choose a gauge in which the vec-
tor potential vanishes identically throughout that region.
The vector potential, being curl-free, may be written as
the gradient of a scalar function. If one subtracts the gra-
dient of that function from A, one obtains a new A′ which
vanishes. Thus, it may be claimed that the mentioned AB
effect for ±q is not observable.

In this section, we revise in points (1) and (2) below,
the criteria for phase or gauge invariance in the effects of
the AB type. For this, we use the dipole approximation
with nonrelativistic velocities, and we neglect the radia-
tion terms of order c−2 or higher.
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A gauge transformation is a special case of a phase
transformation. If the total time derivative of an arbitrary
scalar function χ(x, t), (d/dt)χ = ∂tχ+v · ∇χ, is added to
the Lagrangian L, the equations of motion do not change
because

(
d

dt

∂

∂v
− ∇

)
d

dt
χ =

d

dt
∇χ − ∇(∂tχ+v · ∇χ)

= −v×(∇ × ∇χ) = 0,

while the wave function for H acquires the pure phase
�
−1

∫ ∇χ · dx = �
−1χ(x, t). However, since

∮
S
(∇×∇χ) ·

dS = 0, there is no em flux associated with the term ∇χ.
Special care should be given to the case of particles

with opposite em properties in a coherent superposition
of states |a〉 and |b〉 that travel (for example, on path a) at
one side of the singularity. Since we have ∇ × Q = 0 along
this path, the quantity Q may be expressed as the gradient
of a scalar function and a suitable phase transformation
may be chosen such that

∫
a(Q−∇χ) · d�� = 0. Thus, even

the above-mentioned AC effect, wherein the paths of the
two beams of particles are not spatially separated and lie
at one side of the singularity [15], should not be detectable.
However, the result of the measurement of the AC phase
shift of this effect [15] indicates that ∆φ = �

−12
∫
a
Q·d��

does not vanish and is an observable physical quantity
that cannot be removed by a phase transformation.

The following arguments clarify the problem of phase
(or gauge) invariance in AB effects.

2.1 Phase (or gauge) invariance and the observable
phase shift variation

In the experimental test of these effects the reference pat-
tern of two interfering wave functions Ψ0

a and Ψ0
b , with

phase difference δ φ0 = φ0
a − φ0

b (corresponding to Q0)
and of intensity

I0
ab = I0

a + I0
b + 2

√
I0
aI0

b cos(δ φ0),

is created. This pattern, with its characteristic fringes, is
observable and visible on a screen. The interference pat-
tern of the wave functions Ψa and Ψb, of intensity

Iab = Ia + Ib + 2
√

IaIb cos(δ φ)

and phase difference δ φ = φa − φb (corresponding to Q),
is compared with the reference pattern and the relative
pattern displacement ε, a shift visible on the screen, is
measured. Hence, although it is not possible to determine
independently the value of δ φ, or δ φ0, the relative phase
shift δ φ − δ φ0 can be measured, since it is related to the
relative displacement ε of the patterns, or fringes, observ-
able on the screen.

Thus, the observable quantity that is actually mea-
sured in these effects is the phase shift variation

∆φ = δ φ − δ φ0 =
2
�

∫

a

Q · d�� − 2
�

∫

a

Q0 · d��

=
1
�

∮

C

(Q− Q0) · d��, (4)

where usually Q0 = 0. For example, to test the AB effect
with a solenoid, a tapering iron whisker was used [12] so
that its magnetic flux varies along its length. The AB rela-
tive shift ∆φAB was observable by comparing the relative
position of the sets of fringes displaced, or tilted, by the
varying magnetic flux of different segments of the whisker.
In the measurement of the AB effect with a toroid [13],
two waves — the object wave due to the sample (toroidal
magnet) and the reference wave — form an interference
pattern with phase shift δ φ inside the toroid which is re-
constructed and compared with the interference reference
pattern with phase shift δ φ0 outside the toroid. From the
relative position or displacement ε of the fringes, the quan-
tity δ φ−δ φ0 is determined. Similarly, in the measurement
of the AC effect [15], the phase shift variation δ φ − δ φ0

is obtained by changing the sign of the applied external E
field (this implies Q0 = −Q in Eq. (4)).

If a phase transformation is performed for the men-
tioned effects, the quantity ∆φ of equation (4) trans-
forms as

∆φ′ =
2
�

∫

a

(Q− ∇χ) · d�� − 2
�

∫

a

(Q0 − ∇χ) · d��

=
2
�

∫

a

(Q− Q0) · d�� = ∆φ, (5)

i.e., the observable ∆φ, measured in these quantum ef-
fects, is phase invariant. Each one of the two terms (the
integrals) on the rhs of equation (5), is not an observable
quantity and, taken separately, can be set to zero by a
phase transformation. However, their difference ∆φ′ = ∆φ
is an observable physical quantity that cannot be gauged
(or phase-transformed) to zero.

2.2 The observable phase shift variation and the em
forces

The following argument, which is an elaboration of that
discussed in a previous work [8], corroborates the result
of point (1).

The phase shift variation ∆φ generally relates to force-
free quantum effects that have no classical origin and do
not involve measurements with time-varying fields or po-
tentials. The reference pattern corresponding to δ φ0 is
created using a beam of particles with the fixed, time-
independent sources of potentials and fields producing Q0,
and the pattern corresponding to δ φ is created using a
beam of particles with the fixed sources of potentials and
fields producing Q. Thus, we are discussing here field-free
or force-free quantum effects and it should be clear that
there are no classical forces acting on the particles during
the process of measurement when the fixed pattern corre-
sponding to δ φ0 and the fixed pattern corresponding to
δ φ visible on the screen are compared.

However, if δ φ0 (and Q0) is thought of as being
brought to the value δ φ (and Q) by ideally varying the
sources of fields and potentials, there would be nonvanish-
ing em forces f that may potentially act on the particles.
For example, if in the AB effect the current in the solenoid



330 The European Physical Journal D

is switched on and the vector potential increases from the
value A0 = 0 (and Q0 = 0) to the finite value A �= 0 (and
Q �= 0), then there is an em force f = qE = −(q/c)∂tA
that may act on a nearby charged particle q while A varies.
Thus, there may exist a relationship between the resulting
phase shift variation ∆φ and the hypothetical em force f
that could act on the beam of particles during the time
that the sources of fields and potentials vary. In order to
find this relationship we use a semi-classical argument and
proceed as follows.

The equations of motion for L read

f =
d

dt
(mv) = − d

dt
Q+∇L =−∇V −∂tQ+v×(∇ × Q),

(6)
where outside the singularity ∇ × Q = 0. For a beam or
distribution of particles along a path a of length lp, let us
consider the force density f = f/lp. Taking for simplicity
lp = 1, the initial phase φ = �

−1(p · x−E t) of a free non-
interacting beam of particles is shifted by the amount

δφ = �
−1

∫

a

δ p·dx = �
−1

∫

a

δ (mv) · d�� =
∫

dt

∫

a

f · d��

by the action of the force f . For the relative change∫
a f · d�� − ∫

b f · d�� = 2
∫

a f · d�� =
∮

C f ·d��, we have from
equation (6)
∮

C

f ·d�� = − d

dt

∮

C

Q·d�� = − d

dt

∮

S

∇ × Q·dS = − d

dt
Φem,

(7)
where δΦem = ∇ × Q is the flux tube density and Φem the
em flux through the surface S. The integration of (7) over
dt, from t = 0 to t with Q = Q(t) and Q0 = Q(t = 0),
yields

−
∫ t

0

dt

∮

C

f ·d�� =
∮

C

(Q − Q0)·d�� =
∮

S

∇ × Q·dS
= Φem(t) = � ∆φ. (8)

For simplicity in equation (8) we have assumed that
Q0 = 0 (∆φ = δφ and ∆Φem = Φem) as usual. However,
the term Q0 must be retained formally when checking for
phase or gauge invariance.

Since 2
∫
a
f · d�� =

∮
C

f ·d��, for the case of two beams of
particles in a coherent superposition of states |a〉 and |b〉
not spatially separated that lie at one side of the singu-
larity, equation (8) reads

−2
∫ t

0

dt

∮

a

f ·d�� = 2
∫

a

Q·d�� =
∮

C

Q·d��

= Φem(t) = � ∆φ. (9)

As mentioned above, the phase shift variation ∆φ gen-
erally relates to force-free quantum effects that have no
classical origin and do not involve measurements with
time-varying fields or potentials. In the actual tests of the
AB effects, the reference pattern corresponding to δ φ0 is
created using a beam of particles with the fixed sources of

potentials and fields producing Q0, and the pattern cor-
responding to δ φ is simultaneously created using a beam
of particles with the fixed sources of potentials and fields
producing Q. However, if δ φ0 is brought to the value δ φ
by ideally varying the sources of fields and potentials, the
reference pattern shifts itself on the screen until it co-
incides with the other pattern. In this hypothetical case
the corresponding phase shift variation ∆φ, which at the
end is always the same, may be related to f by means of
(8), or (9), which states that � ∆φ is attributable to the
phase variation, associated with the change δ (mv) of the
linear momentum accumulated along the classical path,
produced by the hypothetical em force f that would arise
if the sources of the fields and potentials were made to
vary.

The expressions (4), (5), (8) and (9) for ∆φ are com-
pletely equivalent from a physical point of view. Equa-
tions (4) and (5) express the value of ∆φ for the force-
free effects of the AB type in terms of the static variation
Q − Q0. Equations (8) and (9) express the value of ∆φ
in terms of the hypothetical force f that could act on the
particles if the variation Q − Q0 were to occur in time.
However, the advantage of deriving equations (8) and (9)
is that the lhs is expressed in term of an invariant quantity,
the force f . Since a pure phase (or gauge) transformation
does not modify the fields and forces, even the rhs of equa-
tions (8) and (9), where Q0 has been set equal to zero, is
left invariant.

Therefore, the established relationship (9) is another
proof that ∆φ cannot be removed by a phase or gauge
transformation.

Let us check now the validity of equation (9) for the
AB effect where QAB = (q/c)A. Recalling that on the
path a it is ∇ × Q = ∇ × A = 0, the force is f = qE =
−(q/c)∂tA, so that in equation (9)

−2
∫ t

0

dt

∫

a

f ·d�� = 2
q

c

∫

a

A·d�� =
q

c

∮

C

A·d�� = � ∆φAB

as expected. For the AC effect QAC = m × E/c with m
perpendicular to v and E. In this case the force on m
reduces to f = (m · ∇)B− c−1ṁ × E [4,21,22]. For time-
varying fields but ṁ = 0, f = (m · ∇)B = ∇(m · B)−
c−1m×∂tE so that

−2
∫ t

0

dt

∫

a

f · d�� = c−1

∮

C

m × E · d�� = � ∆φAC

as expected.
We stress again the fact that, although for the AB ef-

fect we have established the above relationship between
∆φAB and the integral expression of f = −(q/c)∂tA, this
property does not imply that in the Aharonov-Bohm ef-
fect there is a force acting on the beam of charged par-
ticles [23]. In fact, fAB = qE = −(q/c)∂tA = 0 in the
AB effect and in all the related tests or experiments per-
formed. However, since ∆φAB is linked to the variation
A−A0, with our semi-classical approach it is possible to
express ∆φAB also in terms of the time integral of f , the
force that would act on the beam of charged particles if
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the intensity of the current in the solenoid were made to
vary during the time t from the value corresponding to A0

to the final value A.

3 New field-free effects of the AB type

After having pointed out that the quantity measured in
all the AB effects is not the phase shift δ φ but the relative
phase shift ∆φ of equations (4, 5, 8, 9), on account of the
above considerations on phase or gauge invariance, we can
now foresee new field-free effects of the AB type that have
not previously been considered in the literature.

3.1 Field-free effect for beams of charged particles
with opposite signs

Since we are concerned mainly here with the theoretical
aspects involved, let us apply the above considerations to
the AB effect of Figure 2 for charges of opposite signs ±q in
states |a〉 and |b〉 and traveling on one side of the solenoid
on path a. Using expression (4), a phase or gauge trans-
formation yields

∆φ± =
2q

�c

(∫

a

(A − ∇χ) · d�� −
∫

a

(A0 − ∇χ) · d��

)

=
2q

�c

∫

a

(
A − A0

) · d�� = ∆φAB

so that ∆φ± cannot be gauged to zero. Thus, contrary to
general belief, an AB effect for beams of charged particles
with opposite signs is physically possible in principle, at
least as far as gauge (or phase) invariance is concerned.

The description of the experimental conditions nec-
essary for the test of an effect of this type goes beyond
the scope of this paper. Additional investigations may be
needed to develop realistic tests of this effect where beams
of charges of opposite signs ±q traveling on the same path
are involved.

Ideally, beams of charged particles with opposite signs
may be realized with electrons and positrons, or with pos-
itively and negatively ionized atoms or molecules. Since
two charged particles of opposite signs tend to attract
(and, even worse, electrons and positrons tend to anni-
hilate) these beams would be highly unstable, and there
are a number of possible sources of disturbance, like fluc-
tuations in local intensity, that produce instability in this
kind of scenario. In order to achieve stability it is nec-
essary to invoke external stabilizing fields. Consider for
example a set of several long, parallel, linear charge den-
sities of opposite sign lying on a plane. Each positively
charged line lies in the middle of two negatively charged
lines (and vice-versa), with all of them thus in electrome-
chanical equilibrium. Two adjacent central lines of this
set of parallel lines could mimic the two beams of charges
of opposite signs for the test of this quantum effect and
arrangements of this type may be used to minimize the in-
stability of the beams, subject of course to the limitations
imposed by Earnshaw’s theorem [24].

Moreover, although electrons and positrons tend to
annihilate, the probability of annihilation is not infinite.
After annihilation of part of the beams, adjacent intense
beams of electrons and positrons may result in beams of
reduced intensity with a finite time of flight that might
remain stable over short distances. If the time of flight
is long enough, the distance may reach lengths useful for
interferometric purposes. Furthermore, in the case of posi-
tively and negatively ionized atoms or molecules, the time
of flight and corresponding length for stable interfering
beams should be considerably greater. In fact, due to the
greater inertia of massive atoms or molecules, these may
travel for a longer time before the electrostatic attraction
produces collision of opposite charges and the beam’s sta-
bility is disrupted. Beams of heavy positive and negative
ions and molecules are routinely used in cyclotron labo-
ratories and beams of them can be accelerated at a wide
range of energies.

For beams of particles [(+) and (−)] with charges of
opposite signs ±q, the following approach for testing this
effect should be viable, at least conceptually. Interferome-
ters for electrons or atoms exist already, and it should be
possible to adapt them to positrons or ionized atoms and
molecules. The two interfering beams (+) and (−), which
ideally proceed from a common origin, could be prepared
by a process that may employ the technique of beam-
splitting. It is possible that they need not be superim-
posed and may travel slightly separated on parallel paths
in the presence of the same external, field-free em interac-
tion related to Q (or A). Assuming that an interferomet-
ric pattern can be created, the quantity δφ± = φ+ − φ−
represents the relative phase shift of the two [(+) and
(−)] beams. Per se, this phase shift is not physically use-
ful. However, if δφ± can be measured for a value of the
parameter Q (or A) and, if the interferometric device is
such that during the experiment δφ0

± can be measured for
a different value Q0 (or A0), the variation δφ±− δφ0± rep-
resents the sought-for phase shift variation ∆φ±. Even a
qualitative observation of ∆φ± = δφ± − δφ0

± would prove
the observability of this quantum effect. In fact, if all the
other parameters and physical conditions are the same
during the experiment, the variation ∆φ± is due solely to
the change Q− Q0 of the relevant em interaction.

Considering the approaches used for detecting the
phase variations of beams of magnetic dipole moments
±m [15] and of electric dipoles ±d [10], we can infer that
if a system of beams of particles can be prepared in a
superposition of states |a〉 and |b〉 of opposite em prop-
erties, the corresponding time-dependent wave function
reads [10]

Ψ(t) = |a〉 cos(φemt/t0) + i |b〉 sin(φemt/t0). (10)

Here, the quantity φem represents the phase of the em in-
teraction under consideration and the states |a〉 and |b〉
correspond to particles with opposite em properties, such
as charges of opposite signs or particles that possess a
magnetic or electric dipole moment with opposite orienta-
tion. For beams of particles with opposite magnetic dipole
moments ±m [15], the techniques used to prepare the
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states |a〉 and |b〉 are described more fully in reference [25].
In this case, the phase difference of the AC effect was mea-
sured using the Ramsey method of separated oscillatory
fields [26]. The same method is being proposed [10] for
detecting the phase of electric dipoles ±d. The details of
the preparation of states |a〉 and |b〉 for electric dipoles
is given in references [10,27]. The Ramsey loop acts as a
beam splitter [15] providing the required superposition of
±m or ±d, while the corresponding phase evolves between
the two states.

We point out here the instance when the interferomet-
ric approaches [10,15] discussed above should be trans-
posable to the case of a beam in states with charges of
opposite signs ±q, such as a beam of ionized atoms or
molecules. The wave function (10) implies an evolution
between states |a〉 and |b〉 while the em interaction is act-
ing and measurement of the phase variation correspond-
ing to the change Q−Q0 is being made. Thus, the initial
state may correspond to a beam of particles in the state
of negatively ionized atoms or molecules. Due to a conve-
nient interaction with an external agent, the beam may
be electron-stripped in a way that, acting as beam split-
ter, transforms it roughly into the required superposition
of ± ionized atoms or molecules. The particles travel in
this state for suitable distance while the phase is being ac-
cumulated. In this case, techniques analogous to the ones
described above and used for particles with opposite mag-
netic dipole moments ±m [15] or for detecting the phase
of electric dipoles ±d [10], could be conveniently adapted
to test the proposed AB type effect for beams of charges
of opposite signs ±q.

The alternatives explored above are preliminary ten-
tative suggestions only, as several technical aspects and
difficulties need to be considered and overcome before be-
ing able to obtain an appropriately coherent superposition
of states involving beams of charged species of opposite
signs ±q. In closing, although the technology and interfer-
ometry for the test of this effect are not completely avail-
able at the moment, it is worth recalling that not long
time ago the technology and interferometry for beams of
particles with opposite magnetic dipole moments ±m or
electric dipoles ±d was likewise unavailable, but which is
today a reality [10,15]. Thus, although it is certainly a
challenging experiment, discussions on this subject may
act as a stimulating catalyst for further research and one
cannot rule out the possibility that technological advances
will make this quantum effect testable. We believe that
a step in this direction has been made by showing above
that, at least in principle and as far as gauge invariance re-
quirements are concerned, this effect is physically feasible.

3.2 Field-free effect for beams of particles
with opposite magnetic dipole moments ±m

Before concluding, we revise the AC effect and consider
the feasibility of a field-free quantum effect for magnetic
dipoles. Since, for the AC effect QAC = m × E/c, it
would seem impossible to have a field-free (E = 0) quan-
tum effect for particles possessing an intrinsic magnetic

dipole m. However, in reference [8] a generalized quantum
phase for the magnetic dipole has been derived together
with a field-free quantum effect for a beam of magnetic
dipoles encircling a singularity. As shown below, the gen-
eralized Lagrangian for the magnetic dipole has been de-
rived from that of an electric dipole by applying Maxwell’s
duality.

The application of Lq to the two charges of the dipole
d = qa yields, in the dipole approximation with ḋ = 0,
scalar potential V = 0, and within other approximations
described in reference [6],

Ld = K + v · Q = K +
1
c
v · [(d · ∇)A]. (11)

The field-free effect for the electric dipole has been dis-
cussed in reference [7]. Other quantum effects for the elec-
tric dipole are described in references [4,5].

In the case of the magnetic-electric dipole interaction
and in the absence of true free electric charges, the em
momentum Qem in equation (1) may be generalized [8] to
Qem = (1/4πc)

∫
(D × B)d3x′ where D = E+4πP and P

is the polarization density. In order to derive a generalized
Lagrangian for m that complies with equation (8), we use
the em Maxwell duality described in reference [28] and
considered also in reference [10]. Maxwell’s duality trans-
formations imply d ⇒ m,E ⇒ B, and m ⇒−d,B ⇒ −E.
In the dipole approximation, since A = Am = m × rm/r3

and Ad = d × rd/r3, the duality implies also Ad ⇒ A and
A ⇒ −Ad, and the Lagrangian of the magnetic dipole
dual of (11) reads,

Lm = K − 1
c
v · [(m · ∇)Ad], (12)

where

−(m · ∇)Ad = m × ∇ × Ad − ∇(m · Ad)
= m × E− ∇(m · Ad),

being D = E = ∇ × Ad and H = B at the position of
the magnetic dipole m.

The Lagrangians Lm discussed in the literature
(Ref. [2,4,21]), contain only the term Qm = c−1m × E,
where E is the electric field produced by true free electric
charges. As pointed out in reference [8], in the special case
of the magnetic-electric dipole interaction, there are two
strong reasons to consider the Lm of equation (12) as the
correct one for m: Maxwell’s duality and the compliance
with equation (8).

The field-free effect for magnetic dipoles, dual of the S
effect [7] for electric dipoles, consists of beams of moving
magnetic dipoles, possessing opposite magnetic dipole mo-
ments ±m, in a coherent superposition of states |a〉 and
|b〉 that interact with the potential Ad of a distribution
of electric dipoles with polarization density d and thick-
ness τ , shown in Figure 3. The field E = D due to the
polarization P vanishes at the position of the magnetic
dipole m, i.e., E = D = 0 on the path of the particles and
we are dealing with a field-free quantum effect.
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Fig. 3. Field-free effect for magnetic dipoles m in the presence
of the vector potential Ad of a semi-plane of electric dipoles d.
The particles of the two beams in a coherent superposition of
states |a〉 and |b〉 have opposite magnetic dipole moments ±m,
parallel to v × d, and the classical paths of the particles lie
entirely at one side of the singularity, the em flux tube δΦem.
This effect is the Maxwell dual d ⇒ m of the effect for electric
dipoles (Ref. [7]) interacting with the vector potential A of a
semi-plane of magnetic dipoles.

Taking the moment ±m of the particle parallel to the
v × d direction, calculations dual to those of reference [7]
yield

Qm = −c−1(m · ∇)Ad = c−12mdτ∇θ = L∇θ,

and the relative phase shift reads

∆φ = − 2
�c

∮

a

(m · ∇)Ad · dx =
4πmdτ

c�
. (13)

This effect may be observed in magnetic moment inter-
ferometry and its verification is within reach of present
experimental technique (Ref. [8]).

4 Conclusions

In conclusion, the criteria (1) and (2) of Section 2 indi-
cate that ∆φ cannot be removed by a phase or gauge
transformation even in the case of particles that travel on
one side of the singularity in a coherent superposition of
states |a〉 and |b〉. The test performed for the AC effect [15]
is an experimental confirmation of our theoretical analy-
sis. The new field-free quantum effects presented in Sec-
tion 3, for charged particles ±q or magnetic dipoles ±m
in a coherent superposition of states, are a consequence of
these criteria and of the existence of the dual momentum
Qm = −c−1(m · ∇)Ad of equation (12) for the electric-
magnetic dipole interaction.

In the standard interpretation of the AB effect, the
observable relative phase shift ∆φAB is linked to the mag-
netic flux Φm of the solenoid, ∆φAB = (q/c�)Φm, encir-
cled by the interfering beams of electrons. However, our re-
sults indicate that the interfering beams of particles need

not encircle the singular em flux, so that some of the quan-
tum effects of the AB type are not necessarily directly
related to such em flux.

Instead, the underlying fundamental physical quantity
that seems to be relevant and physically meaningful in all
the effects of the AB type is the variation ∆Q of the in-
teraction momentum Q. Although Q may still be linked
to the em flux Φem defined in equation (2), its variation
∆Q that appears in equations (4) and (5) is directly re-
lated to the variation ∆Qem = Qem − Q0

em of the linear
momentum of the em fields. The momentum Qem is an
integral expression and can be related to a nonlocal quan-
tity (such as the vector potential A) but its phase and
gauge invariant variation ∆Qem leads to the observable
phase shift variation ∆φ of equations (4–9).

The proposed field-free quantum effects of the AB type
for interfering beams of particles with opposite charges or
magnetic dipole moments, are in principle viable physi-
cal effects. Although some of the available interferometry
should be transposable to the case of a beam (or beams)
of ionized atoms or molecules, further technological ad-
vances are needed to make this quantum effect testable.
Instead, the test of the effect for interfering beams of par-
ticles with opposite magnetic dipole moments that may
be observed in magnetic moment interferometry, should
be within reach of present experimental techniques.

I am indebted to George T. Gillies for helpful comments and
revision of manuscript. This research was supported by a grant
from the CDCHT (ULA, Mérida, Venezuela).
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